INIS Home	Thesaurus Browse
	Back to Search
	Export to: PDF HTML Excel XML Print Download Citation Export To RefWorks Export To EndNote
from Procee [en] 90Sr(II) is	ate, Mumbai (India)) edings of DAE-BRNS symposium on nuclear and radiochemistry one of the major fission product found in the high level waste of radioactive effluent. In the present work zirconium ferrocyanide exchanger has aprid and selective advertion of Sr(II) using 90Sr as a tracer. The officiency of advertion has been determined by C.M.Counter and was found to
be more than 8 concentration, s interfering ions Subject Source/Report	apid and selective adsorption of Sr(II) using 90Sr as a tracer. The efficiency of adsorption has been determined by G.M Counter and was found to 5%. The Sr(II) uptake of the exchanger has also been evaluated. The effects of various parameters such as pH, time of equilibration, exchanger alts have been studied. Separation factors and Kd values for a number of elements have been determined using their corresponding tracers. The were treated with appropriate reagents prior to the adsorption of Sr(II). (author) MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES (S12) Pujari, P.K.; Goswami, A. (Radiochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Sawant, R.M.; Jeyakumar, S.; Venugopal, V. (Radioanalytical Chemistry Section, Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Board of Research in Nuclear Sciences, Department of Atomic Energy, Mumbai (India); 680 p; 2007; p. 395-396; 8. Nuclear and Radiochemistry Symposium (NUCAR 2007); Vadodara (India); 14-17 Feb 2007; 6 refs., 1 fig., 1 tab.
be more than 8 concentration, s interfering ions Subject	 5%. The Sr(II) uptake of the exchanger has also been evaluated. The effects of various parameters such as pH, time of equilibration, exchanger alts have been studied. Separation factors and Kd values for a number of elements have been determined using their corresponding tracers. The were treated with appropriate reagents prior to the adsorption of Sr(II). (author) MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES (S12) Pujari, P.K.; Goswami, A. (Radiochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Sawant, R.M.; Jeyakumar, S.; Venugopal, V. (Radioanalytical Chemistry Section, Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Board of Research in Nuclear Sciences, Department of Atomic Energy, Mumbai (India); 680 p; 2007; p. 395-396; 8. Nuclear and Radiochemistry
e more than 8 oncentration, s nterfering ions Subject Source/Report Record Type Country/Org. SEC	 5%. The Sr(II) uptake of the exchanger has also been evaluated. The effects of various parameters such as pH, time of equilibration, exchanger alts have been studied. Separation factors and Kd values for a number of elements have been determined using their corresponding tracers. The were treated with appropriate reagents prior to the adsorption of Sr(II). (author) MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES (S12) Pujari, P.K.; Goswami, A. (Radiochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Sawant, R.M.; Jeyakumar, S.; Venugopal, V. (Radioanalytical Chemistry Section, Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Board of Research in Nuclear Sciences, Department of Atomic Energy, Mumbai (India); 680 p; 2007; p. 395-396; 8. Nuclear and Radiochemistry Symposium (NUCAR 2007); Vadodara (India); 14-17 Feb 2007; 6 refs., 1 fig., 1 tab. Book India ALKALINE EARTH ISOTOPES; BETA DECAY RADIOISOTOPES; BETA-MINUS DECAY RADIOISOTOPES; COMPLEXES; EVEN-EVEN NUCLEI; INTERMEDIATE MASS NUCLEI; ION EXCHANGE MATERIALS; IRON COMPLEXES; ISOTOPE APPLICATIONS; ISOTOPES; MANAGEMENT; MATERIALS; NUCLEI; RADIOACTIVE MATERIALS; RADIOACTIVE WASTES; RADIOISOTOPES; STRONTIUM ISOTOPES; TRANSITION ELEMENT COMPOUNDS; WASTE MANAGEMENT; WASTES; YEARS LIVING
be more than 8 concentration, s interfering ions Subject Source/Report Record Type Country/Org. DEC	5%. The Sr(II) uptake of the exchanger has also been evaluated. The effects of various parameters such as pH, time of equilibration, exchanger alts have been studied. Separation factors and Kd values for a number of elements have been determined using their corresponding tracers. The were treated with appropriate reagents prior to the adsorption of Sr(II). (author) MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES (S12) Pujari, P.K.; Goswami, A. (Radiochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Sawant, R.M.; Jeyakumar, S.; Venugopal, V. (Radioanalytical Chemistry Section, Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Board of Research in Nuclear Sciences, Department of Atomic Energy, Mumbai (India); 680 p; 2007; p. 395-396; 8. Nuclear and Radiochemistry Symposium (NUCAR 2007); Vadodara (India); 14-17 Feb 2007; 6 refs., 1 fig., 1 tab. Book India ALKALINE EARTH ISOTOPES; BETA DECAY RADIOISOTOPES; BETA-MINUS DECAY RADIOISOTOPES; COMPLEXES; EVEN-EVEN NUCLEI; INTERMEDIATE MASS NUCLEI; ION EXCHANGE MATERIALS; IRON COMPLEXES; ISOTOPE APPLICATIONS; ISOTOPES; MANAGEMENT; MATERIALS; NUCLEI; RADIOACTIVE MATERIALS; RADIOACTIVE WASTES; RADIOISOTOPES; STRONTIUM ISOTOPES; TRANSITION ELEMENT COMPLEXES; TRANSITION ELEMENT COMPOUNDS; WASTE MANAGEMENT; WASTES; YEARS LIVING RADIOISOTOPES FERROCYANIDES; HIGH-LEVEL RADIOACTIVE WASTES; INORGANIC ION EXCHANGERS; RADIOACTIVE WASTE MANAGEMENT;
be more than 8 concentration, s interfering ions Subject Source/Report Record Type Country/Org. DEC DEI Language Ref. Number	 5%. The Sr(II) uptake of the exchanger has also been evaluated. The effects of various parameters such as pH, time of equilibration, exchanger alts have been studied. Separation factors and Kd values for a number of elements have been determined using their corresponding tracers. The were treated with appropriate reagents prior to the adsorption of Sr(II). (author) MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES (S12) Pujari, P.K.; Goswami, A. (Radiochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Sawant, R.M.; Jeyakumar, S.; Venugopal, V. (Radioanalytical Chemistry Section, Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Board of Research in Nuclear Sciences, Department of Atomic Energy, Mumbai (India); 680 p; 2007; p. 395-396; 8. Nuclear and Radiochemistry Symposium (NUCAR 2007); Vadodara (India); 14-17 Feb 2007; 6 refs., 1 fig., 1 tab. Book India ALKALINE EARTH ISOTOPES; BETA DECAY RADIOISOTOPES; BETA-MINUS DECAY RADIOISOTOPES; COMPLEXES; EVEN-EVEN NUCLEI; INTERMEDIATE MASS NUCLEI; ION EXCHANGE MATERIALS; IRON COMPLEXES; ISOTOPE APPLICATIONS; ISOTOPES; MANAGEMENT; MATERIALS; NUCLEI; RADIOACTIVE MATERIALS; RADIOACTIVE WASTES; RADIOISOTOPES; STRONTIUM ISOTOPES; TRANSITION ELEMENT COMPLEXES; INORGANIC ION EXCHANGERS; RADIOISOTOPES; YEARS LIVING RADIOISOTOPES FERROCYANIDES; HIGH-LEVEL RADIOACTIVE WASTES; INORGANIC ION EXCHANGERS; RADIOACTIVE WASTES MANAGEMENT; STRONTIUM 90; TRACER TECHNIQUES; ZIRCONIUM COMPOUNDS English 39024322
De more than 8 concentration, s interfering ions Subject Source/Report Record Type Country/Org. DEC DEI Language Ref. Number Rel. Record	 5%. The Sr(II) uptake of the exchanger has also been evaluated. The effects of various parameters such as pH, time of equilibration, exchanger alts have been studied. Separation factors and Kd values for a number of elements have been determined using their corresponding tracers. The were treated with appropriate reagents prior to the adsorption of Sr(II). (author) MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES (S12) Pujari, P.K.; Goswami, A. (Radiochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Sawant, R.M.; Jeyakumar, S.; Venugopal, V. (Radioanalytical Chemistry Section, Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Board of Research in Nuclear Sciences, Department of Atomic Energy, Mumbai (India); 680 p; 2007; p. 395-396; 8. Nuclear and Radiochemistry Symposium (NUCAR 2007); Vadodara (India); 14-17 Feb 2007; 6 refs., 1 fig., 1 tab. Book India ALKALINE EARTH ISOTOPES; BETA DECAY RADIOISOTOPES; BETA-MINUS DECAY RADIOISOTOPES; COMPLEXES; EVEN-EVEN NUCLEI; INTERMEDIATE MASS NUCLEI; RADIOACTIVE MATERIALS; RADIOACTIVE WASTES; RADIOISOTOPES; STRONTIUM ISOTOPES; TRANSITION ELEMENT COMPLEXES; TRANSITION ELEMENT COMPOUNDS; WASTE MANAGEMENT; WASTES; YEARS LIVING RADIOISOTOPES FERROCYANIDES; HIGH-LEVEL RADIOACTIVE WASTES; INORGANIC ION EXCHANGERS; RADIOACTIVE WASTE MANAGEMENT; STRONTIUM 90; TRACER TECHNIQUES; ZIRCONIUM COMPOUNDS English 39024168
be more than 8 concentration, s nterfering ions Subject Source/Report Record Type Country/Org.	 5%. The Sr(II) uptake of the exchanger has also been evaluated. The effects of various parameters such as pH, time of equilibration, exchanger alts have been studied. Separation factors and Kd values for a number of elements have been determined using their corresponding tracers. The were treated with appropriate reagents prior to the adsorption of Sr(II). (author) MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES (S12) Pujari, P.K.; Goswami, A. (Radiochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Sawant, R.M.; Jeyakumar, S.; Venugopal, V. (Radioanalytical Chemistry Section, Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Board of Research in Nuclear Sciences, Department of Atomic Energy, Mumbai (India); 680 p; 2007; p. 395-396; 8. Nuclear and Radiochemistry Symposium (NUCAR 2007); Vadodara (India); 14-17 Feb 2007; 6 refs., 1 fig., 1 tab. Book India ALKALINE EARTH ISOTOPES; BETA DECAY RADIOISOTOPES; BETA-MINUS DECAY RADIOISOTOPES; COMPLEXES; EVEN-EVEN NUCLEI; INTERMEDIATE MASS NUCLEI; ION EXCHANGE MATERIALS; IRON COMPLEXES; ISOTOPE APPLICATIONS; ISOTOPES; MANAGEMENT; MATERIALS; NUCLEI; RADIOACTIVE MATERIALS; RADIOACTIVE WASTES; RADIOISOTOPES; STRONTIUM ISOTOPES; TRANSITION ELEMENT COMPLEXES; INORGANIC ION EXCHANGERS; RADIOISOTOPES; YEARS LIVING RADIOISOTOPES FERROCYANIDES; HIGH-LEVEL RADIOACTIVE WASTES; INORGANIC ION EXCHANGERS; RADIOACTIVE WASTES MANAGEMENT; STRONTIUM 90; TRACER TECHNIQUES; ZIRCONIUM COMPOUNDS English 39024322

Copyright © 2010-2014 International Atomic Energy Agency (IAEA). All rights reserved. v4.3.1.20140509